Part Number Hot Search : 
B3772 AT43USB WM859407 0800074 CY5BSMD EM73866 UMC2NT1 R100F
Product Description
Full Text Search
 

To Download 10-PY07N3A015SM-M892F08Y Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-PY07N3A015SM-M892F08Y datasheet flow 3xnpc 1 650 v / 15 a neutral-point-clamped inverter ultra fast switching low inductance layout very compact design press-fit pins solar inverters ups smps 10-PY07N3A015SM-M892F08Y t j =25c, unless otherwise specified parameter symbol value unit buck igbt t h =80c 20 t c =80c 27 t j 175c v ce <=v ces t h =80c 43 t c =80c 66 buck fwd t h =80c 22 t c =80c 30 i fsm 150 a t h =80c 42 t c =80c 64 650 v t j =t j max t j =25c 20 t j =t j max t p limited by t j max t j =t j max maximum junction temperature t jmax w 45 150 c v 600 a 45 175 pulsed collector current dc collector current v ces i crm i c collector-emitter break down voltage types maximum ratings condition features flow 1 housing target applications schematic v a a c a w t p =10ms t j =t j max peak repetitive reverse voltage v ge t jmax p tot i fav v rrm turn off safe operating areapower dissipation forward average current power dissipationsurge forward current gate-emitter peak voltagemaximum junction temperature p tot 09 oct. 2014 / revision 2 copyright vincotech 1
10-PY07N3A015SM-M892F08Y datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition boost igbt t h =80c 25 t c =80c 33 t j 150c v ce <=v ces t h =80c 59 t c =80c 90 t sc t j 150c 6 s v cc v ge =15v 360 v boost inverse diode t h =80c 19 t c =80c 25 t h =80c 39 t c =80c 59 boost fwd t j =25c t h =80c 19 t c =80c 25 t h =80c 39 t c =80c 59 t j =t j max t j =t j max t j =t j max t p limited by t j max maximum junction temperaturepeak repetitive reverse voltage repetitive peak forward current t p limited by t j max t c =25c v rrm forward average current t jmax t j =t j max short circuit ratings dc collector current power dissipation turn off safe operating areagate-emitter peak voltage pulsed collector current v ces v collector-emitter break down voltage w va a c aa w a w v c va a t jmax p tot i crm i c 175 power dissipation maximum junction temperature v ge i fav i frm 20 650 p tot 650 v rrm peak repetitive reverse voltageforward average current t j =t j max i fav c maximum junction temperature t jmax 175 20 power dissipation repetitive peak forward current p tot t j =t j max i frm t p limited by t j max 20 60 150650 60 09 oct. 2014 / revision 2 copyright vincotech 2
10-PY07N3A015SM-M892F08Y datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition thermal propertiesinsulation properties t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm -40+(tjmax - 25) c storage temperature t stg -40+125 c clearance insulation voltagecreepage distance t op operation temperature under switching condition 09 oct. 2014 / revision 2 copyright vincotech 3
10-PY07N3A015SM-M892F08Y datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 3,3 4 4,7 tj=125c tj=25c 1,64 2,22 tj=125c 1,77 tj=25c 0,04 tj=125c tj=25c 200 tj=125c tj=25c 73 tj=125c 72 tj=25c 8 tj=125c 9 tj=25c 72 tj=125c 86 tj=25c 10 tj=125c 11 tj=25c 0,199 tj=125c 0,277 tj=25c 0,072 tj=125c 0,127 thermal resistance chip to heatsink r th(j-s) phase-change material ? =3,4w/mk 2,20 k/w tj=25c 2,47 2,6 tj=125c 1,73 tj=25c 100 tj=150c tj=25c 17 tj=125c 23 tj=25c 22 tj=125c 36 tj=25c 0,225 tj=125c 0,523 tj=25c 1736 tj=125c 1606 tj=25c 0,024 tj=125c 0,060 thermal resistance chip to heatsink r th(j-s) phase-change material ? =3,4w/mk 1,65 k/w 15 520350 25 350 15 650 1515 15 0,0004 ( d i rf /d t ) max 600 0 r gint v ge(th) rgon=32 ? i ces c rss v f f=1mhz q rr reverse recovery time reverse leakage current i r t d(on) v ce =v ge rgoff=32 ? v cesat 0 reverse transfer capacitancediode forward voltage gate charge buck fwd fall time gate-emitter leakage currentintegrated gate resistor input capacitance i ges peak reverse recovery current collector-emitter cut-off current incl. diode characteristic values value conditions none turn-off delay time reverse recovered energy peak rate of fall of recovery current output capacitance collector-emitter saturation voltageturn-off energy loss rise timeturn-on energy loss buck igbt gate emitter threshold voltageturn-on delay time reverse recovered charge 15 150 1520 15 t rr i rrm rgon=32 ? t r t d(off) e on q g c oss t f c ies e off e rec 240 tj=25c tj=25c 930 4 v pf ns na a nca v a/s c mws ma ? mws v ns 38 copyright vincotech 4 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value conditions tj=25c 5,1 5,8 6,4 tj=125c tj=25c 1,03 1,54 1,87 tj=125c 1,76 tj=25c 0,01 tj=125c tj=25c 200 tj=125c tj=25c 65 tj=125c 66 tj=25c 15 tj=125c 17 tj=25c 139 tj=125c 161 tj=25c 65 tj=125c 73 tj=25c 0,210 tj=125c 0,267 tj=25c 0,395 tj=125c 0,542 thermal resistance chip to heatsink r th(j-s) phase-change material ? =3,4w/mk 1,60 k/w tj=25c 1,68 1,87 tj=125c 1,56 thermal resistance chip to heatsink r th(j-s) phase-change material ? =3,4w/mk 2,44 k/w tj=25c 1,23 1,67 1,87 tj=125c 1,56 tj=25c 0,14 tj=125c tj=25c 12 tj=125c 14 tj=25c 156 tj=125c 278 tj=25c 0,68 tj=125c 1,22 tj=25c 1738 tj=125c 153 tj=25c 0,187 tj=125c 0,348 thermal resistance chip to heatsink r th(j-s) phase-change material ? =3,4w/mk 2,44 k/w mws a v ns a/s pf nc tj=25c ? 120 ns none tj=25c 15 25 v cesat boost inverse diode turn-on delay time diode forward voltage rise timeturn-off energy loss reverse transfer capacitance output capacitance turn-on energy loss gate emitter threshold voltagefall time gate-emitter leakage current collector-emitter saturation voltageturn-off delay time collector-emitter cut-off incl diodeintegrated gate resistor boost igbt t d(on) v f t d(off) t r c oss c ies i ces 1100 32 71 mw/k mws c % +4,5 ? mw 210 a v rated resistance 20 tj=100c 21511 10 r100=1486 ? power dissipation constant power dissipation p deviation of r100 v r gint i ges v ce =v ge v boost fwd t f q g e off gate charge input capacitance rgon=16 ? reverse recovery time 15 150 ma na peak reverse recovery current q rr e rec peak rate of fall of recovery current t rr reverse recovery energy reverse recovered charge ( d i rf /d t ) max i rrm c rss v ge(th) tj=25c 10 e on 20 15 600 200 0,00029 rgon=16 ? rgoff=16 ?f=1mhz diode forward voltagereverse leakage current v f i r 0350 480 350 650 15 15 vincotech ntc reference b-value b(25/50) b-value b(25/100) r r/r thermistor k 3964 tj=25c k 3884 3,5 f -4,5 tj=25c tj=25c tj=25c copyright vincotech 5 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 1 igbt figure 2 igbt typical output characteristics i c = f( v ce ) i c = f( v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 igbt figure 4 fwd typical transfer characteristics typical diode forward current as i c = f( v ge ) a function of forward voltage i f = f( v f ) at at t p = 250 s t p = 250 s v ce = 5 v buck typical output characteristics 0 5 10 15 20 25 30 35 40 45 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 v ce (v) i c (a) 0 2 4 6 8 10 12 14 16 0 1 2 3 4 5 6 7 8 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0 1 2 3 4 5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 35 40 45 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 v ce (v) i c (a) copyright vincotech 6 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 5 igbt figure 6 igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f( i c ) e = f( r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 15 a r goff = 32 ? figure 7 fwd figure 8 fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f( i c ) e rec = f( r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 15 a buck e on high t e off high t e on low t e off low t 0,0 0,1 0,2 0,3 0,4 0,5 0 5 10 15 20 25 30 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0 20 40 60 80 100 120 140 r g ( ? ) e (mws) e rec high t e rec low t 0,00 0,02 0,04 0,06 0,08 0,10 0 5 10 15 20 25 30 i c (a) e (mws) e rec high t e rec low t 0,00 0,02 0,04 0,06 0,08 0,10 0 20 40 60 80 100 120 140 r g ( ? ) e (mws) copyright vincotech 7 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 9 igbt figure 10 igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f( i c ) t = f( r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 15 a r goff = 32 ? figure 11 fwd figure 12 fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f( i c ) t rr = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 15 a r gon = 32 ? v ge = 15 v buck t doff t f t don t r 0,00 0,01 0,10 1,00 0 5 10 15 20 25 30 i c (a) t (ms) t rr high t t rr low t 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0 20 40 60 80 100 120 140 r gon ( ? ) t rr (ms) t doff t f t don t r 0,00 0,01 0,10 1,00 0 20 40 60 80 100 120 140 r g ( ? ) t (ms) t rr high t t rr low t 0,00 0,01 0,02 0,03 0,04 0,05 0 5 10 15 20 25 30 i c (a) t rr (ms) copyright vincotech 8 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 13 fwd figure 14 fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f( i c ) q rr = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 15 a r gon = 32 ? v ge = 15 v figure 15 fwd figure 16 fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f( i c ) i rrm = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 15 a r gon = 32 ? v ge = 15 v buck i rrm high t i rrm low t 0 10 20 30 40 50 0 20 40 60 80 100 120 140 r gon ( ? ) i rrm (a) q rr high t q rr low t 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0 20 40 60 80 100 120 140 r gon ( w ww w ) q rr ( c) i rrm high t i rrm low t 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 i c (a) i rrm (a) q rr high t q rr low t 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0 5 10 15 20 25 30 i c (a) q rr ( c) copyright vincotech 9 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 17 fwd figure 18 fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor d i 0 /d t ,d i rec /d t = f( i c ) d i 0 /d t ,d i rec /d t = f( r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 15 a r gon = 32 ? v ge = 15 v figure 19 igbt figure 20 fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f( t p ) z thjh = f( t p ) at at d = t p / t d = t p / t r thjh = 2,20 k/w r thjh = 1,65 k/w igbt thermal model values fwd thermal model values r (k/w) tau (s) r (k/w) tau (s) 0,11 2,1e+00 0,05 4,1e+00 0,17 4,5e-01 0,10 5,7e-01 0,76 9,1e-02 0,71 7,9e-02 0,59 2,4e-02 0,40 2,0e-02 0,40 5,0e-03 0,21 4,7e-03 0,17 9,0e-04 0,17 9,2e-04 buck t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt t di rec /dt t 0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 20 40 60 80 100 120 140 r gon ( ? ) di rec / dt (a/ms) di 0 /dt t di rec /dt t 0 500 1000 1500 2000 2500 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ms) copyright vincotech 10 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 21 igbt figure 22 igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f( t h ) i c = f( t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 fwd figure 24 fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f( t h ) i f = f( t h ) at at t j = 150 c t j = 150 c buck 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 35 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 35 40 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 11 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 25 igbt figure 26 igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f( v ce ) v ge = f( q g ) at at d = single pulse i c = 0 a t h = 80 oc v ge = 15 v t j = t jmax oc figure 27 igbt reverse bias safe operating area i c = f( v ce ) at t j = 125 c r gon = 32 ? r goff = 32 ? buck v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 2,5 5 7,5 10 12,5 15 0 10 20 30 40 q g (nc) v ge (v) 130v 520v 0 5 10 15 20 25 30 35 40 45 50 55 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 12 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 1 igbt figure 2 igbt typical output characteristics typical output characteristics i c = f( v ce ) i c = f( v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 124 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 igbt figure 4 fwd typical transfer characteristics typical diode forward current as i c = f( v ge ) a function of forward voltage i f = f( v f ) at at t p = 250 s t p = 250 s v ce = 10 v boost 0 10 20 30 40 50 60 0,0 0,5 1,0 1,5 2,0 2,5 3,0 v ce (v) i c (a) 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 35 40 45 0 0,5 1 1,5 2 2,5 3 3,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0,0 0,5 1,0 1,5 2,0 2,5 3,0 v ce (v) i c (a) copyright vincotech 13 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 5 igbt figure 6 igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f( i c ) e = f( r g ) with an inductive load at with an inductive load at t j = 25/124 c t j = 25/124 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 16 ? i c = 15 a r goff = 16 ? figure 7 fwd figure 8 fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f( i c ) e rec = f( r g ) with an inductive load at with an inductive load at t j = 25/124 c t j = 25/124 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 16 ? i c = 15 a boost e rec high t e rec low t 0,0 0,1 0,2 0,3 0,4 0,5 0 5 10 15 20 25 30 i c (a) e (mws) e rec high t e rec low t 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0 10 20 30 40 50 60 70 r g ( w ww w ) e (mws) e off high t e on high t e on low t e off low t 0 0,2 0,4 0,6 0,8 1 0 5 10 15 20 25 30 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0 10 20 30 40 50 60 70 r g ( w ww w ) e (mws) copyright vincotech 14 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 9 igbt figure 10 igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f( i c ) t = f( r g ) with an inductive load at with an inductive load at t j = 124 c t j = 124 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 16 ? i c = 15 a r goff = 16 ? figure 11 fwd figure 12 fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f( i c ) t rr = f( r gon ) at at t j = 25/124 c t j = 25/124 c v ce = 350 v v r = 350 v v ge = 15 v i f = 15 a r gon = 16 ? v ge = 15 v boost t doff t f t don t r 0,001 0,01 0,1 1 0 5 10 15 20 25 30 i c (a) t ( m s) t doff t f t don t r 0,001 0,01 0,1 1 0 10 20 30 40 50 60 70 r g ( w ww w ) t ( m s) t rr high t t rr low t 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0 10 20 30 40 50 60 70 r gon ( ? ) t rr (ms) t rr high t t rr low t 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0 5 10 15 20 25 30 i c (a) t rr (ms) copyright vincotech 15 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 13 fwd figure 14 fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f( i c ) q rr = f( r gon ) atat at t j = 25/124 c t j = 25/124 c v ce = 350 v v r = 350 v v ge = 15 v i f = 15 a r gon = 16 ? v ge = 15 v figure 15 fwd figure 16 fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f( i c ) i rrm = f( r gon ) at at t j = 25/124 c t j = 25/124 c v ce = 350 v v r = 350 v v ge = 15 v i f = 15 a r gon = 16 ? v ge = 15 v boost i rrm high t i rrm low t 0 5 10 15 20 25 30 35 0 10 20 30 40 50 60 70 r gon ( ? ) i rrm (a) q rr high t q rr low t 0 0,2 0,4 0,6 0,8 1 1,2 1,4 0 10 20 30 40 50 60 70 r gon ( w ) q rr ( c) i rrm high t i rrm low t 0 2 4 6 8 10 12 14 16 18 0 5 10 15 20 25 30 i c (a) i rrm (a) q rr high t q rr low t 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8 0 5 10 15 20 25 30 i c (a) q rr ( c) copyright vincotech 16 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 17 fwd figure 18 fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor d i 0 /d t ,d i rec /d t = f( i c ) d i 0 /d t ,d i rec /d t = f( r gon ) at at t j = 25/124 c t j = 25/124 c v ce = 350 v v r = 350 v v ge = 15 v i f = 15 a r gon = 16 ? v ge = 15 v figure 19 igbt figure 20 fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f( t p ) z thjh = f( t p ) at at d = t p / t d = t p / t r thjh = 1,60 k/w r thjh = 2,44 k/w igbt thermal model values fwd thermal model values r (k/w) tau (s) r (k/w) tau (s) 0,07 3,986 0,06 5,6e+00 0,30 0,314 0,17 6,5e-01 0,70 0,055 0,60 1,5e-01 0,38 0,007 0,58 3,9e-02 0,15 0,0005 0,61 8,9e-03 0,42 2,0e-03 boost t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt t di rec /dt t -1000 0 1000 2000 3000 4000 5000 6000 7000 8000 0 10 20 30 40 50 60 70 r gon ( ? ) di rec / dt (a/ms) di rec /dt t di 0 /dt t 0 500 1000 1500 2000 2500 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ms) copyright vincotech 17 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 21 igbt figure 22 igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f( t h ) i c = f( t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 23 fwd figure 24 fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f( t h ) i f = f( t h ) at at t j = 175 oc t j = 175 oc boost 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 35 40 0 50 100 150 200 t h ( o c) i c (a) 0 15 30 45 60 75 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 18 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 25 boost inverse diode figure 26 boost inverse diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f( v f ) z thjh = f( t p ) at at t p = 250 s d = t p / t r thjh = 2,44 k/w figure 27 boost inverse diode figure 28 boost inverse diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f( t h ) i f = f( t h ) at at t j = 175 oc t j = 175 oc boost inverse diode 0 5 10 15 20 25 30 35 40 45 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 15 30 45 60 75 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 19 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 1 thermistor typical ntc characteristicas a function of temperature r t = f( t ) thermistor ntc-typical temperature characteristic 0 4000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r ( ? ) copyright vincotech 20 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet t j 125 c r gon 16 ? r goff 16 ? figure 1 boost igbt figure 2 boost igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon ( t e off = integrating time for e off ) ( t e on = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 15 a i c (100%) = 15 a t doff = 0,16 s t don = 0,066 s t e off = 0,41 s t e on = 0,17 s figure 3 boost igbt figure 4 boost igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 15 a i c (100%) = 15 a t f = 0,073 s t r = 0,017 s switching definitions boost general conditions == = i c 1% v ce 90% v ge 90% -25 0 25 50 75 100 125 -0,1 0 0,1 0,2 0,3 0,4 time (us) % t doff t eoff v ce i c v ge i c 10% v ge 10% t don v ce 3% -50 0 50 100 150 200 2,95 3 3,05 3,1 3,15 3,2 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 100 125 0 0,1 0,2 0,3 0,4 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 100 150 200 3,04 3,06 3,08 3,1 3,12 3,14 3,16 3,18 time(us) % t r v ce i c copyright vincotech 21 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 5 boost igbt figure 6 boost igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 5,26 kw p on (100%) = 5,26 kw e off (100%) = 0,54 mj e on (100%) = 0,27 mj t e off = 0,41 s t e on = 0,17 s figure 7 boost igbt turn-off switching waveforms & definition of t rr v d (100%) = 350 v i d (100%) = 15 a i rrm (100%) = -14 a t rr = 0,28 s switching definitions boost i c 1% v ge 90% -25 0 25 50 75 100 125 -0,1 0 0,1 0,2 0,3 0,4 time (us) % p off e off t eoff v ce 3% v ge 10% -25 0 25 50 75 100 125 150 175 2,95 3 3,05 3,1 3,15 3,2 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -125 -100 -75 -50 -25 0 25 50 75 100 125 3,05 3,1 3,15 3,2 3,25 3,3 3,35 3,4 time(us) % i d v d fitted copyright vincotech 22 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 8 boost fwd figure 9 boost fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec ( t q rr = integrating time for q rr ) ( t erec = integrating time for e rec ) i d (100%) = 15 a p rec (100%) = 5,26 kw q rr (100%) = 1,22 c e rec (100%) = 0,35 mj t q rr = 0,55 s t e rec = 0,55 s figure 10 boost stage switching measurement circuit measurement circuit switching definitions boost t qrr -100 -50 0 50 100 150 3 3,1 3,2 3,3 3,4 3,5 3,6 3,7 time(us) % i d q rr -25 0 25 50 75 100 125 3 3,1 3,2 3,3 3,4 3,5 3,6 3,7 time(us) % p rec e rec t erec v vce v vge l2 115uh +350v vdc a ic v vcc d13 d14 t3 t4 boost fred buck igbt buck fred boost igbt -15v -15v +15v q q 0.00001 q q 0.000003 q q +15v -15v 16_ohm rgoff 16_ohm rgon t1 t2 copyright vincotech 23 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet t j 125 c r gon 32 ? r goff 32 ? figure 1 buck igbt figure 2 buck igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon ( t e off = integrating time for e off ) ( t e on = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 15 a i c (100%) = 15 a t doff = 0,09 s t don = 0,07 s t e off = 0,16 s t e on = 0,17 s figure 3 buck igbt figure 4 buck igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 15 a i c (100%) = 15 a t f = 0,01 s t r = 0,01 s switching definitions buck general conditions == = i c 1% v ce 90% v ge 90% -25 0 25 50 75 100 125 -0,05 0 0,05 0,1 0,15 time (us) % t doff t eoff v ce i c v ge i c 10% v ge 10% t don v ce 3% -50 0 50 100 150 200 250 2,95 3 3,05 3,1 3,15 3,2 time(us) % i c v ce v ge t eon fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 100 125 0 0,03 0,06 0,09 0,12 0,15 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 100 150 200 250 3,06 3,08 3,1 3,12 3,14 3,16 3,18 time(us) % t r v ce i c copyright vincotech 24 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 5 buck igbt figure 6 buck igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 5,23 kw p on (100%) = 5,23 kw e off (100%) = 0,13 mj e on (100%) = 0,28 mj t e off = 0,16 s t e on = 0,17 s figure 7 buck igbt turn-off switching waveforms & definition of t rr v d (100%) = 350 v i d (100%) = 15 a i rrm (100%) = -23 a t rr = 0,04 s switching definitions buck i c 1% v ge 90% -25 0 25 50 75 100 125 -0,05 0 0,05 0,1 0,15 time (us) % p off e off t eoff v ce 3% v ge 10% -50 0 50 100 150 200 250 2,95 3 3,05 3,1 3,15 3,2 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -200 -150 -100 -50 0 50 100 150 3,05 3,07 3,09 3,11 3,13 3,15 3,17 time(us) % i d v d fitted copyright vincotech 25 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet figure 8 buck fred figure 9 buck fred turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec ( t q rr = integrating time for q rr ) ( t erec = integrating time for e rec ) i d (100%) = 15 a p rec (100%) = 5,23 kw q rr (100%) = 0,52 c e rec (100%) = 0,06 mj t q rr = 0,07 s t e rec = 0,07 s figure 10 buck stage switching measurement circuit measurement circuit switching definitions buck t qrr -150 -100 -50 0 50 100 150 3,05 3,075 3,1 3,125 3,15 3,175 3,2 time(us) % i d q rr -50 -25 0 25 50 75 100 125 3,05 3,075 3,1 3,125 3,15 3,175 3,2 time(us) % p rec e rec t erec v vce v vge 115uh l2 v vcc d13 d14 t3 t4 boost fred buck igbt buck fred boost igbt -15v +15v t1 t2 q q 0.00001 q q 0.000003 q q +15v -15v 32_ohm rgoff 32_ohm rgon a vdc 700 47kohm 3*470uf 3*470uf 47kohm l 1mh -15v copyright vincotech 26 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet in datamatrix as in packaging barcode as m892f08y m892f08y pin x y 1 0 28,2 2 6 28,2 3 9,7 28,2 4 15,7 28,2 5 18,7 28,2 6 24,7 28,2 7 27,7 28,2 8 33,8 28,2 9 36,8 28,2 10 42,8 28,2 11 46,2 28,2 12 52,2 28,2 13 52,2 23,7 14 52,2 20,7 15 41,25 20,6 16 38,25 20,6 17 32,55 20,6 18 29,55 20,6 19 18,7 20,7 20 18,7 23,7 21 15,7 23,7 22 15,7 20,7 23 4,75 20,6 24 1,75 20,6 25 8,35 12,2 26 11,35 12,2 pin x y 27 19,95 12,2 36 37,95 0 28 22,95 12,2 37 29,2 0 29 44,35 12,2 38 26,2 0 30 47,35 12,2 39 23,2 0 31 52,2 8,9 40 20,4 0 32 52,2 5,9 41 11,8 0 33 46,75 0 42 9 0 34 43,95 0 43 6 0 35 40,95 0 44 3 0 pinout ordering code & marking ordering code and marking - outline - pinout version standard in flow1 12mm housing ordering code pin table outline 10-PY07N3A015SM-M892F08Y pin table copyright vincotech 27 09 oct. 2014 / revision 2
10-PY07N3A015SM-M892F08Y datasheet flow 3xnpc 1 disclaimerlife support policy as used herein:2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. the information, specifications, procedures, methods and recommendations herein (together information) are presented by vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. no representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. it is readers sole responsibility to test and determine the suitability of the information and the product for readers intended use. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. copyright vincotech 28 09 oct. 2014 / revision 2


▲Up To Search▲   

 
Price & Availability of 10-PY07N3A015SM-M892F08Y

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X